The Mathematics of Flowers (ATOS 10.6)
Word Count: 83
⠠⠮⠀⠠⠍⠁⠮⠍⠁⠞⠊⠉⠎⠀⠷⠀⠠⠋⠇⠪⠻⠎
⠠⠮⠀⠠⠋⠊⠃⠕⠝⠁⠒⠊⠀⠝⠥⠍⠃⠻⠎⠀⠜⠑⠀⠁⠀⠎⠑⠟⠥⠰⠑⠀⠷
⠝⠥⠍⠃⠻⠎⠀⠱⠀⠕⠒⠥⠗⠀⠔⠀⠝⠁⠞⠥⠗⠑⠲⠀⠠⠮⠀⠠⠋⠊⠃⠕⠝⠁⠒⠊
⠎⠑⠟⠥⠰⠑⠀⠆⠛⠔⠎⠀⠾⠀⠮⠀⠋⠕⠇⠇⠪⠬⠀⠝⠥⠍⠃⠻⠎⠒⠀⠼⠚⠂
⠼⠁⠂⠀⠼⠁⠂⠀⠼⠃⠂⠀⠼⠉⠂⠀⠼⠑⠂⠀⠼⠓⠂⠀⠼⠁⠉⠂⠀⠼⠃⠁⠂⠀⠼⠉⠙⠂
⠼⠑⠑⠂⠀⠼⠓⠊⠂⠀⠯⠀⠒⠞⠔⠥⠑⠎⠲⠀⠠⠘⠮⠀⠝⠥⠍⠃⠻⠎⠀⠏⠗⠕⠧⠊⠙⠑⠀⠮
⠍⠂⠎⠥⠗⠑⠰⠞⠎⠀⠞⠕⠀⠍⠁⠅⠑⠀⠁⠀⠏⠻⠋⠑⠉⠞⠀⠎⠏⠊⠗⠁⠇⠀⠐⠣⠏⠔⠑
⠉⠐⠕⠎⠂⠀⠎⠥⠝⠋⠇⠪⠻⠀⠎⠑⠫⠎⠂⠀⠑⠞⠉⠲⠐⠜⠲⠀⠠⠔⠞⠻⠑⠌⠬⠇⠽⠂⠀⠔
⠸⠍⠀⠋⠇⠪⠻⠎⠂⠀⠮⠀⠝⠥⠍⠃⠻⠀⠷⠀⠏⠑⠞⠁⠇⠎⠀⠙⠊⠗⠑⠉⠞⠇⠽
⠉⠕⠗⠗⠑⠇⠁⠞⠑⠎⠀⠞⠕⠀⠁⠀⠝⠥⠍⠃⠻⠀⠔⠀⠮⠀⠠⠋⠊⠃⠕⠝⠁⠒⠊
⠎⠑⠟⠥⠰⠑⠲⠀⠠⠿⠀⠑⠭⠁⠍⠏⠇⠑⠂⠀⠊⠗⠊⠎⠑⠎⠀⠓⠀⠼⠉⠀⠏⠑⠞⠁⠇⠎⠂
⠉⠕⠇⠥⠍⠃⠔⠑⠎⠀⠓⠀⠼⠑⠀⠏⠑⠞⠁⠇⠎⠂⠀⠯⠀⠗⠁⠛⠺⠕⠗⠞⠀⠯
⠍⠜⠊⠛⠕⠇⠙⠎⠀⠓⠀⠼⠁⠉⠀⠏⠑⠞⠁⠇⠎⠲
-- Words per Minute
-- Correct Word per Minute
Accuracy: --%
Accuracy: --%
The Mathematics of Flowers
The Fibonacci numbers are a sequence of numbers which occur in nature. The Fibonacci sequence begins with the following numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, and continues. These numbers provide the measurements to make a perfect spiral (pine cones, sunflower seeds, etc.). Interestingly, in many flowers, the number of petals directly correlates to a number in the Fibonacci sequence. For example, irises have 3 petals, columbines have 5 petals, and ragwort and marigolds have 13 petals.